
Using	PLCopen	OPC-UA	Client	Function	Blocks	to	model	MDIS	Information	

Tim	Fortin,	Senior	Principal	Engineer,	Honeywell	Process	Solutions	

At	its	core,	OPC	UA	combines	a	robust,	secure	communication	protocol	with	a	flexible	information	modeling	framework.		
A	challenge	for	the	PLC	vendor	deploying	OPC	UA	in	embedded	devices	is	how	to	represent	different	customers'	
information	modeling	requirements	in	a	common	way.		In	particular,	what	does	it	mean	for	the	embedded	OPC	UA	
client	application	to	“understand”	an	information	model?		What	follows	is	a	description	of	the	discovery	process	leading	
to	one	such	solution.	

The	Oil	and	Gas	Industry	Challenge	

A	challenge	in	the	upstream	oil	and	gas	industry	is	minimizing	the	engineering	cost	associated	with	integration	of	the	
various	components	which	encompass	subsea	control	with	those	components	that	comprise	topside	control.		The	MCS-
DCS	Interface	Standardization	(MDIS)	network1	was	formed	to	address	the	desire	for	a	standard	communication	
interface	between	the	subsea	gateway,	the	MCS	(Master	Control	System)	and	the	DCS	(Distributed	Control	system).	

OPC	UA	was	selected	by	MDIS	as	the	protocol	to	provide	the	communication	link	between	the	MCS	and	the	DCS.		OPC	
UA	offers	a	number	of	features	which	aligned	with	the	requirements	of	the	MDIS	protocol	selection	process.		Among	
these	are	communication	integrity,	redundancy,	robustness	and	independent	organization	support.		Additionally,	and	
perhaps	most	importantly,	OPC	UA	provides	a	rich	information	modeling	framework.	

The	OPC	UA	Information	Model	

The	OPC	UA	specifications	define	a	base	information	model	and	an	underlying	infrastructure.	This	combination	of	
information	model	and	infrastructure	enables	vendors	or	organizations	such	as	MDIS	to	define	domain-specific	
information	models.		Key	foundational	principles	include:	

• Object-oriented	techniques	such	as	type	hierarchies	and	inheritance	ensures	that	client	applications	can	
understand	and	process	instances	of	the	same	type	in	the	same	way.	

• Instances	include	type	information.	
• Full	exposure	of	type	information	as	well	as	instance	information	in	the	address	space.	Both	are	accessed	exactly	

the	same	way.	
• Subtyping	enables	vendor	specific	type	extensions.			

When	data	items	within	the	server's	address	space	can	be	readily	identified	as	having	known	semantics,	the	client	
application	can	expose	this	generically,	irrespective	of	the	server	vendor.		For	MDIS,	the	OPC	UA	client	that	understands	
the	semantics	of	an	MDIS	valve	object	can,	for	example,	expose	a	suitable	faceplate	which	represents	a	valve	object.		A	
single	faceplate	can	be	reused	with	any	MDIS	compliant	OPC	UA	server,	reducing	the	engineering	effort	when	a	system	
is	deployed.	

PLCopen	and	the	Embedded	OPC	UA	Client	

While	relatively	easy	to	grasp	the	power	of	a	published	information	model	for	the	user	of	a	GUI-based	OPC	UA	client	
application,	how	can	the	user	of	an	embedded	OPC	UA	client	achieve	the	same?	

Enter	the	PLCopen,	OPC	Foundation	Joint	Technical	Specification	"PLCopen	OPC-UA	Client	for	IEC	61131-3".		As	stated	by	
the	PLCopen	technical	working	group,	"With	this	functionality	implemented	on	a	controller	it	becomes	possible	to	
initiate	a	communication	session	to	any	other	available	OPC	UA	Server.	The	controller	can	exchange	complex	data	
structures	horizontally	with	other	controllers	independently	from	fieldbus	system,	or	vertically	with	other	devices	using	
an	OPC	UA	server	call	in	an	MES/ERP	system	in	order	to	collect	data	or	write	new	production	orders	to	the	cloud."			

																																																													
1	http://www.mdis-network.com/	

The	PLCopen	specification	defines	a	number	of	IEC	61131-3	function	blocks	and	associated	data	structures	which	
collectively	represent	most	OPC	UA	client	behaviors.		For	example	the	UaConnect	function	block	initiates	a	transport	
connection	and	OPC	UA	session:	

	

		The	UA_ReadList	collects	the	values	from	multiple	nodes	in	the	server's	address	space:	

	

	

	Ua_MethodCall	is	used	to	invoke	a	method	object	in	the	server's	address	space:	

	

Circling	back	to	the	question	of	the	embedded	OPC	UA	client	from	above,	it	turns	out	that	the	confluence	of	the	
PLCopen	OPC	UA	Client	Function	blocks	and	the	flexibility	of	the	61131-3	programming	model	provides	an	answer.		

The	MDIS	Information	Model		

At	its	core,	the	MDIS	information	model	consists	of	a	set	of	object	definitions	representing	components	commonly	
associated	with	subsea	control.		This	object	set	includes:	

• MDISBaseObject	
• MDISDiscreteInstrumentObject	
• MDISDiscreteOutObject	
• MDISDigitalInstrumentObject	
• MDISDigitalOutObject	
• MDISInstrumentObject	
• MDISInstrumentOutObject	
• MDISChokeObject	
• MDISValveObject	

Picking	the	MDISValveObject	as	representative,	the	“MDIS	OPC	UA	Companion	Specification”	depicts	the	object	as	
shown	below:	

MDISValveObjectType

<Interlocks>

 Status
Commands

Configuration

MDISValve
ObjectType

LastCommand (O)

NonDefeatable
OpenInterlock (O)

Defeatable
OpenInterlock (O)

NonDefeatable
CloseInterlock (O)

Defeatable
CloseInterlock (O)

 SignatureRequest
Status (O)

OpenTimeDuration
(O)

CloseTime
Duration (O)

Position

CommandRejected
(O)

Move

InterlockVariableType::
<InterlockPlaceholder>

 Status Information

Commands

Enabled (O)

EnableDisable (O)

Fault

Warning(O)

MDISBaseObjectType

FaultCode(O)

WarningCode(O)

InterlockVariableType::
<InterlockPlaceholder>

InterlockFor

HasInterlock

InterlockFor

Configuration

TagId(O)

Note	the	hierarchical	definition	of	MDISValveObjectType	and	the	fact	that	it	is	a	subtype	of	MDISBaseObjectType	as	are	
all	of	the	MDIS	object	types	listed	earlier.		This	means	that	all	MDIS	objects	share	certain	“base”	features	(e.g.,	“Fault”	
flag)	and	related	semantics	which	are	defined	by	the	MDISBaseObjectType.	

An	MDIS	compliant	OPC	UA	server	exposes	the	MDIS	information	model	as	additional	OPC	UA	types	within	the	server’s	
set	of	object	type	definitions.		Instances	of	the	MDISValveObject	represent	a	physical	subsea	valve	device.	

Using	the	PLCopen	OPC	UA	Client	Function	Blocks	

Back	to	the	61131-3	environment,	clearly	a	collection	of	several	PLCopen	function	blocks	can	be	“wired	together”	to	
enable	the	exchange	data	between	the	OPC	UA	client	and	a	given	MDIS	server’s	valve	object.		This	workflow	is	shown	
conceptually	in	the	PLCopen	specification	as	follows:	

	

However,	because	each	unique	MDIS	valve	object	has	unique	identifiers	for	each	of	its	information	model	components,	
a	custom	configuration	is	required	for	each	valve.	That	is,	the	OPC	identifier	for	say,	the	“Fault”	component	is	different	
for	every	valve,	and	function	block	configuration	in	the	workflow	depiction	above	needs	to	be	adjusted	for	each	valve	
accordingly	in	order	to	read	the	value	of	“Fault”.	

The	Power	of	the	Browse	Name	

When	defining	the	model	for	an	object	–	its	type	definition	-	as	part	of	an	OPC	UA	information	model,	one	of	the	
required	elements	is	called	the	“Browse	Name”	which	is	a	string	representation	assigned	to	each	of	the	object’s	
constituent	components.			OPC	UA	requires	that	the	Browse	Name	associated	with	components	of	an	object	instance	
must	be	identical	to	the	Browse	name	defined	in	the	corresponding	object	type.		In	the	case	of	the	MDIS	valve	object	
and	its	Fault	component,	the	browse	name	defined	by	the	MDIS	specification	is	“Fault”	and	every	MDIS	valve	instance	in	
any	MDIS	server	will	have	a	Fault	component	whose	browse	name	is	“Fault”.	

So	why	is	this	important?		Among	the	many	services	supported	by	OPC	UA	servers	and	available	to	OPC	UA	clients	is	one	
that	can	provide	or	“translate”	the	unique	internal	identifier	for	a	data	item	given	its	“Browse	Path”.			A	“Browse	Path”	is	
simply	a	Browse	Name	together	with	additional	location	and/or	semantic	context.		A	client	interested	in	reading	the	
value	of	the	Fault	component	of	a	particular	valve	object	simply	invokes	the	service,	requesting	the	unique	identifier	for	
the	component	whose	browse	name	is	“Fault”	belonging	to	the	specific	valve	object	instance.		Further,	PLCopen	defines	
a	special	function	block,	UA_TranslatePath,	for	just	this	purpose2,3.	

	

Revisiting	the	example	workflow	shown	earlier,	the	(assumed,	not	shown)	step	in	the	flow	between	
UA_NameSpaceGetIndex	and	UA_NodeGetHandleList	which	required	the	user	to	manually	obtain	the	list	of	unique,	
server-specific	identifiers	for	each	of	the	data	items	intended	as	input	to	the	UA_ReadList	block	can	be	replaced	with	a	
bit	of	clever	structured	text	logic	using	the	UA_TranslatePath	block.		That	is,	where	before	it	was	necessary	to	manually	
collect	the	list	of	unique	IDs	for	each	data	item	intended	to	be	read/written	either	via	outside	browsing	of	the	server’s	
address	space	or	server	vendor	documentation,	when	we	know	that	these	data	items	are	constituent	components	of	an	
MDIS	valve	then	we	can	create	a	generic	strategy	which	utilizes	the	known	Browse	Names	for	these	components	
together	with	the	UA_TranslatePath	block.		This	generic	strategy	is	able	to	access	the	components	of	any	MDIS	valve	
																																																													
2	In	the	block	depicted,	“Browse	Path”	is	basically	the	combination	of	“StartNodeID”	and	“RelativePath”	
3	The	function	block	depicted	is	from	the	PLCOpen	specification	“OPC-UA	Client	Function	Blocks	for	IEC	61131-3”	version	1.0.		A	new	
specification	version	1.1	has	recently	been	released	which	defines	a	new	“UA_TranslatePathList”	block	offering	greater	flexibility.	

object	of	any	MDIS	OPC	UA	server	without	any	knowledge	beforehand	of	the	unique	identifiers	associated	with	these	
components.	

Custom	Function	Blocks	Incorporating	the	MDIS	Information	Model	

What	follows	is	an	example	from	a	set	of	custom	61131-3	function	blocks	designed	to	consume	an	MDIS	server's	
information	model	and	which	utilize	the	translate	path	technique	described	above.		It	should	be	noted	that	the	resultant	
blocks	were	in	fact	successfully	tested	at	the	MDIS	Interoperability	test	event	held	this	past	September	in	Houston,	TX.	

	

The	MDISValveObject	custom	function	block	shown	was	developed	using	the	61131-3	structured	text	programming	
language.		Internally	the	block	uses	these	PLCopen	function	blocks4:	

• UA_TranslatePath	
• UA_NodeGetHandleList	
• UA_ReadList	
• UA_MethodGetHandle	
• UA_MethodCall	

The	programming	logic	that	makes	up	the	MDISValveObject	is	summarized	below	in	pseudo	code	(PLCopen	block	calls	
shown	in	bold):	

BEGIN PROGRAM	

(** Initialization **)
IF (ConnectionHandle = 0) THEN

																																																													
4	The	Connect_Disconnect	block	also	shown	is	a	custom	“convenience”	block	designed	to	simplify	connection	management	and	
which	incorporates	PLCOpen	blocks	UA_Connect	and	UA_Disconnect	

 RelativePathListData[1] := 'TagId';
 RelativePathListData[2] := 'Enabled';
 RelativePathListData[3] := 'Warning';
 (** Additional paths ... **)
 RelativePathListData[16] := 'CloseTimeDuration';
 RelativePathListData[17] := 'Move';
 RelativePathListData[18] := 'EnableDisable';

 TranslatedNodeIds[];
 NodeHandleList[];
 MethodHandleList[];

 DoTranslatePaths := TRUE;
 DoGetNodeHandles := FALSE;
 DoGetMethodHandles := FALSE;
 DoReadList := FALSE;
 CallEnableDisable := FALSE;
 CallMove := FALSE;

END_IF;

(** Translate the browse paths to NodeIds **)
IF (ConnectionHandle <> 0) AND (DoTranslatePaths = TRUE) THEN
 Success := UA_TranslatePath (IN=>RelativePathList, OUT=>TranslatedNodeIds[], OUT=>ErrorID);
 DoTranslatePaths := FALSE;
 IF (Success = TRUE) THEN
 DoGetNodeHandles := TRUE;
 Error := FALSE;
 ELSE
 Error := TRUE;
 END_IF;
END_IF;

(** Obtain data node handles for the list of translated NodeIds **)
IF (ConnectionHandle <> 0) AND DoGetNodeHandles = TRUE) THEN
 Success := UA_NodeGetHandleList (IN=>TranslatedNodeIds[1..16], OUT=>NodeHandleList[], OUT=>ErrorID);
 DoGetNodeHandles := FALSE;
 IF (Success = TRUE) THEN
 DoGetMethodHandles := TRUE;
 Error := FALSE;
 ELSE
 Error := TRUE;
 END_IF;
END_IF;

(** Obtain method node handles for the list of translated NodeIds **)
IF (ConnectionHandle <> 0) AND DoGetMethodHandles = TRUE) THEN
 Success := UA_MethodGetHandle (IN=>TranslatedNodeIds[17..18], OUT=>MethodHandleList[],
OUT=>ErrorID);
 DoGetMethodHandles := FALSE;
 IF (Success = TRUE) THEN
 DoReadList := TRUE;
 Error := FALSE;
 ELSE
 Error := TRUE;
 END_IF;
END_IF;

(** Read data values for data node handles **)
IF (ConnectionHandle <> 0) AND DoReadList = TRUE) THEN
 (** etc. **)
END_IF;

(** Call the EnableDisable method **)
IF (ConnectionHandle <> 0) AND (CallEnableDisable = TRUE) THEN
 (** etc. **)
END_IF;

(** Call the Move method **)
IF (ConnectionHandle <> 0) AND (CallMove = TRUE) THEN
 (** etc. **)
END_IF;

END PROGRAM;	

Given	the	identifier	of	any	MDIS	valve	object	instance	in	any	OPC	UA	server,	this	block	will	programmatically	determine	
server	specific	identifiers	for	the	each	of	the	valve	components,	begin	collecting	current	data	values	and	be	at	the	ready	
to	invoke	either	of	the	two	methods	supported	by	this	object.	
	
In	addition,	once	a	library	of	custom	function	blocks	representing	all	of	the	MDIS	objects	has	been	assembled,	they	
themselves	can	be	further	organized	into	hierarchies	representing	aggregate	device	objects	such	as	CIMVs5	or	MPFMs6.	
	

Summary	Thoughts	
What	became	obvious	during	this	journey	to	understand	how	to	incorporate	one	OPC	UA	information	model	into	the	
world	of	the	embedded	OPC	UA	client	is	that	pretty	much	any	information	model	can	be	similarly	represented.		In	fact,	
as	more	and	more	OPC	UA	companion	specifications	continue	to	be	developed	for	diverse	industry	applications,	ready-
made	function	block	libraries	tailored	for	the	various	information	models	can	easily	be	envisioned.		To	that	end,	it	should	
be	noted	the	PLCopen	group	is	currently	wrapping	up	work	on	a	new	specification	"Creating	PLCopen	compliant	
Libraries"	intended	to	provide	consistency	across	different	vendor	libraries.		Incorporating	a	given	information	model	
into	the	embedded	client	will	eventually	become	a	simple	matter	of	downloading	the	appropriate	library.	

	
	
References	

1. MDIS	OPC	UA	Companion	Specification,	Release	Candidate	1.0,	June	20,	2016	
2. PLCopen	OPC	UA	Client	for	IEC61131-3	Version	1.1,	September	5,	2016,	PLCopen	and	OPC	Foundation	
3. Mahnke,	W.,	Leitner,	S.,	Damm,	M.,	(2009).		OPC	Unified	Architecture.	Berlin:	Springer	

	

																																																													
5	Chemical	Injection	Metering	Valves	
6	Multiphase	Flow	Meters	

